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Sex chromosome constitution varies in the human population, both between the sexes (46,XX

females and 46,XY males), and within the sexes (e.g., 45,X and 46,XX females, and 47,XXY and

46,XY males). Coincident with this genetic variation are numerous phenotypic differences

between males and females, and individuals with sex chromosome aneuploidy. However, the

molecular mechanisms by which sex chromosome constitution impacts phenotypes at the cellu-

lar, tissue, and organismal levels remain largely unexplored. Thus, emerges a fundamental ques-

tion connecting the study of sex differences and sex chromosome aneuploidy syndromes: How

does sex chromosome constitution influence phenotype? Here, we focus on Turner syndrome

(TS), associated with the 45,X karyotype, and its synergies with the study of sex differences. We

review findings from evolutionary studies of the sex chromosomes, which identified genes that

are most likely to contribute to phenotypes as a result of variation in sex chromosome constitu-

tion. We then explore strategies for investigating the direct effects of the sex chromosomes,

and the evidence for specific sex chromosome genes impacting phenotypes. In sum, we argue

that integrating the study of TS with sex differences offers a mutually beneficial alliance to iden-

tify contributions of the sex chromosomes to human development, health, and disease.
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1 | INTRODUCTION

The clinical features that define Turner syndrome (TS), including short

stature, hypogonadism, and webbed neck, were first described in

1938 and TS was associated with the monosomy X karyotype (45,X)

in 1959 (Ford, Jones, Polani, Dealmeida, & Briggs, 1959; Turner,

1938). In the 60 years since this association, questions regarding the

causal role of the 45,X karyotype in TS phenotypes have accumulated.

In parallel, another field has been considering the contributions of the

sex chromosomes: the biology of sex differences. It is well-appreciated

that males and females differ in sex chromosome constitution—most

males are 46,XY, while most females are 46,XX—and that there are

extensive phenotypic differences between males and females in health

and disease (Wizemann and Pardue, 2001). For example, a variety of

autoimmune diseases, including lupus, multiple sclerosis, and rheuma-

toid arthritis are more prevalent in females (Ngo, Steyn, & McCombe,

2014). In contrast, certain neurodevelopmental disorders, such as

autism, attention-deficit hyperactivity disorder, and intellectual disabil-

ity are male-biased (Boyle et al., 2011; Werling & Geschwind, 2013).

Nonetheless, we know little about how the sex chromosomes contrib-

ute to many sex-biased phenotypes. Fundamentally, the TS and sex dif-

ferences fields are united by the pursuit of connections between

variation in sex chromosome constitution and phenotype. Thus, as we

have previously argued (Page & Miller, 2016), it is time for a strategic

alliance between TS and sex differences researchers.

A primary goal of this alliance should be to decipher the complex

landscape of variables that contribute to TS and sex differences. These

include sex chromosome constitution, gonadal hormone profiles, and

disparate environmental exposures. In fact, the impact of sex chromo-

some constitution has long been minimized compared with the effects

of gonadal hormones. In this regard, it was commonly thought that sex

chromosomes modulate phenotypes throughout the body indirectly

through their primary role in sex determination and the subsequent

organizing effects of gonadal hormones. Progress in understanding the

biology of the sex chromosomes has led to a significant conceptual

departure from this idea: that the sex chromosomes have direct effects

on cells and tissues outside of the reproductive tract, which are not

mediated through gonadal hormones (Skaletsky et al., 2003). Indeed,
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many genes on the sex chromosomes are expressed throughout the

body and participate in fundamental cellular processes such as tran-

scription and translation (Bellott et al., 2014; Tukiainen et al., 2017).

However, proving that sex chromosome constitution independently

contributes to a given phenotype requires experimental models and

strategies that can distinguish between effects of these co-occurring

variables.

Here, we will review the evidence that sex chromosome constitu-

tion directly affects phenotypes in both TS and sex differences. We

begin with a discussion of sex chromosome evolution, which can be

considered a natural experiment that reveals promising candidate

genes for mediating phenotypes throughout the body. Second, we

consider experimental models that allow researchers to disentangle

the effects of the sex chromosomes from other co-occurring variables.

Third, we highlight two case studies of sex chromosome genes that

have been convincingly implicated in mediating specific phenotypes in

TS and may also contribute to sex differences. Finally, we suggest

future approaches for increasing synergy between research in TS and

sex differences.

2 | STUDIES OF SEX CHROMOSOME
EVOLUTION REVEAL CANDIDATE GENES
FOR TS AND SEX DIFFERENCES

The investigation of sex chromosome evolution has been a successful

strategy to identify genes that potentially contribute to TS and sex dif-

ferences. Although research in TS typically focuses on the X chromo-

some, much of our understanding of sex chromosome evolution

comes from the complementary study of the Y chromosome, as X and

Y evolution occurred in parallel. The human sex chromosomes evolved

from a pair of ordinary autosomes present in the common ancestor of

mammals and birds approximately 300 million years ago (Lahn & Page,

1999; Ohno, 1967). X and Y chromosome differentiation began with

the emergence of SRY, the male sex-determining gene, on the proto-Y

chromosome before the evolutionary divergence of marsupials and

placental mammals. Subsequently, a series of chromosomal inversions

on the Y chromosome suppressed crossing-over with the X chromo-

some. In this region of suppressed X–Y crossing-over, the X and Y

chromosomes diverged, resulting in a male-specific region on the Y

(MSY; Figure 1a). The X and Y chromosomes are identical in two pseu-

doautosomal regions (PARs) at the tips of the chromosomes, where

X–Y crossing-over occurs and is required for proper pairing and chro-

mosome segregation in male meiosis (Cooke, Brown, & Rappold,

1985; Freije, Helms, Watson, & Donis-Keller, 1992). The loss of

crossing-over with the X chromosome across the MSY led to genetic

decay; only 3% of genes from the ancestral chromosome (17 of �640

ancestral genes) survive on the human Y chromosome (Bellott et al.,

2014; Skaletsky et al., 2003). In contrast, the X chromosome retained

98% of the ancestral genes (Bellott et al., 2014).

Although the X chromosome retained almost all of the ancestral

genes, they did not follow a unified evolutionary path. Recent evi-

dence shows that prior to sex chromosome differentiation, genes on

the ancestral autosomes had inherent differences in sensitivity to

gene dosage that resulted in four classes of divergent evolutionary

trajectories on the X chromosome in the context of Y chromosome

decay (Bellott et al., 2014; Bellott et al., 2017; Naqvi, Bellott, Lin, &

Page, 2018). First are the PAR genes, which are distinguishable from

the rest of the classes because this region never stopped crossing-

over with the Y chromosome (Figure 1b). Here, we specifically refer to

the PAR1 genes (on the tip of the short arm), since PAR2 (on the end

of the long arm) was not part of the ancestral chromosomes

(Ciccodicola et al., 2000). The PAR genes remain expressed from both

copies of the X chromosome in 46,XX females, and on the X and Y

chromosomes in 46,XY males. TS and sex-biased phenotypes may be

impacted by PAR genes that are dosage sensitive.

The second class is comprised of genes on the ancestral auto-

somes with a high inherent sensitivity to gene dosage. As a result,

they could not tolerate transient dosage changes and resisted decay

on the Y chromosome. These 14 genes remain as homologous pairs

with a single copy on the X and Y chromosomes and continue to be

expressed from both X chromosomes in 46,XX females, and from the

X and Y chromosomes in 46,XY males (Lahn & Page, 1997)

(Figure 1b). As the X–Y pair genes do not crossover during meiosis,

they have diverged and encode distinct protein isoforms; the X and Y

copies retain 73–98% DNA and 71–99% protein identity (Skaletsky

et al., 2003). Molecular functions of the X–Y pair genes have not been

extensively compared; however, there is some evidence from mouse

studies and in vitro experiments demonstrating either functional inter-

changeability or divergence, depending on the experimental context.

For example, the histone lysine demethylase Uty is redundant with

Kdm6a (Utx) in mouse development (Lee, Lee, & Lee, 2012; Shpargel,

Sengoku, Yokoyama, & Magnuson, 2012), but the human UTY protein

shows reduced demethylase activity in vitro compared to UTX (Hong

et al., 2007; Lan et al., 2007).

Studies of independent sex chromosome systems reinforce the

idea that survival of ancestral genes on sex-specific chromosomes is

an important indicator of dosage sensitivity. Indeed, the same princi-

ple holds for the chicken ZW system, in which the W chromosome is

present exclusively in females. Like the Y, the W chromosome has

extensively degenerated over time, yet retains a set of genes that are

highly dosage sensitive (Bellott et al., 2017). In the case of both the Y

and W, the remaining ancestral genes are broadly expressed through-

out the body and involved in fundamental cellular processes including

transcription, epigenetic regulation, and translation (Figure 1c) (Bellott

et al., 2014; Bellott et al., 2017). As we discuss below, these genes are

some of the top candidates for contributing to TS and sex-biased

phenotypes.

The third, and largest, class of X chromosome genes includes

genes on the ancestral autosomes with intermediate dosage sensitiv-

ity. These genes went through a complex, three-step evolutionary

process: (a) decay of the Y-linked homolog; (b) X chromosome upregu-

lation; and (c) X chromosome inactivation (Jegalian & Page, 1998;

Ohno, 1967). Following loss of the Y homologs, the genes were tran-

scriptionally upregulated on the X chromosome in both sexes to main-

tain the ancestral gene dosage in males. The increased expression

would have been deleterious to females; therefore, a mechanism of

transcriptional dosage compensation, X chromosome inactivation

(XCI), arose to silence one copy (Figure 1b). As these “X-inactivated”

genes have equivalent expression in individuals with one or more
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X chromosomes, they are not likely to underlie phenotypes related to

variation in sex chromosome constitution.

Finally, genes with the lowest dosage sensitivity followed a fourth

path: they were lost from the Y chromosome but are not subject to

XCI today. Instead, they “escaped” XCI and are expressed from both X

chromosomes in 46,XX females. The exact evolutionary trajectory

they took to get there is not clear; they either were not upregulated

following Y decay and did not require XCI, or they were upregulated

but did not become inactivated (Figure 1b). Escape genes are

expressed at higher levels in 46,XX females compared to 46,XY males

across tissues (Tukiainen et al., 2017), and are plausible candidates for

contributing to sex-biased phenotypes.

Since the phenotypes in TS are related to the loss of all or part

of a sex chromosome, candidate genes should be sensitive to gene

dosage and require expression from two alleles on the sex chromo-

somes (Ferguson-Smith, 1965; Held et al., 1992; Hook & Warburton,

1983). Given this, and because 46,XY males do not display TS pheno-

types despite only having a single X chromosome, causal TS genes

must be common to X and Y, and functionally interchangeable

(Watanabe, Zinn, Page, & Nishimoto, 1993; Zinn, Page, & Fisher,

1993). There are two groups of genes that fit these criteria: (a) PAR

genes and (b) X–Y pair genes (if they prove to be functionally inter-

changeable in specific phenotypic contexts relevant to TS; Figures 2

and 3).

FIGURE 1 Evolution of the human sex chromosomes resulted in four gene classes on the X chromosome. (a) Sex chromosome evolution began

with ordinary autosomes. SRY emergence began Y chromosome differentiation, followed by a series of inversions that resulted in loss of crossing-
over between the male-specific region of the Y (MSY) and the non-pseudoautosomal region of the X (NPX). The pseudoautosomal region (PAR)

on the short arm retained X–Y crossing-over. (b) Four classes of genes on the X chromosome underwent different evolutionary trajectories as a
result of Y chromosome decay. The black wavy lines indicate the level of mRNA expressed from each gene. PAR1 genes (1) retained X-Y crossing-
over and remain expressed from both the X and Y chromosomes. X-Y pair genes (2) reside in the NPX and MSY, and do not cross-over, but due to
high dosage sensitivity the Y gene was preserved, and expression retained on both X chromosomes in 46,XX females. X-inactivated genes (3) had
intermediate dosage sensitivity, which allowed for Y chromosome decay. This was followed by upregulation on the X chromosome to retain
ancestral dosage in males, and subsequent inactivation of one allele in females. Escape genes (4) followed the same initial path as the X-inactivated
genes, but did not become inactivated. Some escape genes may have avoided the step of X upregulation, indicated by the gray dashed arrow
bypassing this step. These genes would have lower levels of mRNA expression (gray wavy lines) compared to genes that underwent X upregulation.
(c) Functions of select human X–Y pair genes, adapted from “Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators,” by
Bellott et al., 2014, Nature, 508, p. 494
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Sex-biased phenotypes must be mediated by genes that are

(a) expressed at different levels based on sex chromosome dosage,

and/or (b) encode Y chromosome proteins with unique functions.

Escape genes and PAR genes fit the first criterion, while X–Y pairs fit

both criteria. Genes that escape XCI are expressed higher in females

(Carrel, Cottle, Goglin, & Willard, 1999); conversely, PAR genes tend

to be more highly expressed in males due to spreading of XCI into the

PAR in 46,XX females (Tukiainen et al., 2017). X-Y pair genes may

have differences in the cumulative expression from both of the X

chromosomes in 46,XX females or summed expression from the X and

Y chromosomes in 46,XY males. Additionally, the X–Y pair genes may

exhibit functional differences because they encode distinct protein

isoforms (Skaletsky et al., 2003). This divergence allows for the

intriguing possibility that the X and Y protein isoforms lead to distinct

biochemical activities in males and females (Figures 2 and 3).

3 | EXPERIMENTAL MODELS FOR
IDENTIFYING PHENOTYPES MEDIATED BY
SEX CHROMOSOME CONSTITUTION

At this point, we have a sufficient understanding of the types of genes

that likely contribute to phenotypes due to variation in sex chromo-

some constitution. However, obtaining experimental evidence to

prove the involvement of any specific gene or the sex chromosomes

in general is not trivial. This is complicated by the co-occurrence of

other variables with sex chromosome constitution, including gonadal

hormone profiles and environmental exposures. For example, typical

46,XX females and 46,XY males differ in the levels of circulating estro-

gens and androgens, while women with TS have reduced estrogen

levels compared to 46,XX females (Turner, 1938). There have been

many strategies applied to this challenge, each with its pros and cons;

we will evaluate some of them here and provide suggestions for mov-

ing forward.

One common strategy for deciphering genotype–phenotype rela-

tionships is to develop a mouse model, which has been applied in both

TS and sex differences. For TS, there is a monosomy X mouse model

(39,X karyotype); however, it does not recapitulate the infertility,

embryonic lethality, or the severity of phenotypes present in TS

(Welshons & Russell, 1959). This is likely because the mouse and

human sex chromosomes have significantly diverged in gene content

and regulation. Seven of the 14 human X–Y pair genes are not present

on the mouse Y chromosome: five were lost and two were retrotran-

sposed onto autosomes (Hughes, Skaletsky, Koutseva, Pyntikova, &

Page, 2015; Soh et al., 2014). Additionally, almost all of the orthologs

of the human PAR genes are found on mouse autosomes or are miss-

ing in the mouse genome (Table 1) (Raudsepp & Chowdhary, 2015).

Moreover, sex chromosome gene dosage regulation differs between

mice and humans; only 3–7% of X-linked genes are expressed from

both X alleles in the mouse, compared to at least 23% in humans

(Berletch et al., 2015; Tukiainen et al., 2017).

FIGURE 2 Mechanisms of sex chromosome contributions to TS and sex differences. (a) PAR genes are typically more highly expressed in 46,XY

males compared with 46,XX females, due to spreading of XCI, and expressed at the lowest levels 45,X individuals. (b) Left, X-Y pair genes may
have differential mRNA expression levels from the X and Y homologs such that 46,XY or 46,XX individuals have unequal total expression. These
genes escape X chromosome inactivation in 46,XX females, so expression is lower in 45,X females. Right, X-Y pair genes may encode functionally
divergent proteins that lead to molecular sex differences between 46,XX and 46,XY individuals. A combination of both mechanisms may also
exist. A combination of both mechanisms may also exist. (c) Genes that escape XCI without a Y homolog may contribute to sex differences due to
differences in mRNA expression. Expression of genes that escape XCI is higher compared to 46,XY and 45,X individuals, in which these genes are
equally expressed. Since 46,XY individuals do not have TS, we do not anticipate that these genes will underlie phenotypes in TS

FIGURE 3 X and Y genes that may contribute to Turner syndrome

and sex differences. This schematic includes two categories of genes
that contribute to TS and sex differences phenotypes: X–Y pair genes
and PAR1 genes (not shown are X escape genes without a Y homolog;
these may also contribute to sex differences). PAR1 genes are listed in
order from distal to proximal. Genes discussed in case studies are
marked with an asterisk
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To study sex differences, a sex-reversed mouse model was devel-

oped to uncouple the effects of sex chromosome constitution and

gonadal hormones. In this model, Sry, the Y-linked testis-determining

gene, is deleted from the Y chromosome and relocated to an autosome

as a transgene, resulting in the ability to generate gonadal males with

either XY or XX chromosomes, and gonadal females with either XX or

XY chromosomes. Therefore, this model allows for the identification of

phenotypes independently associated with either gonadal sex or sex

chromosome constitution. To date, several phenotypes dependent on

sex chromosome constitution have been identified with this model,

such as pathogenesis of autoimmune disease, addiction behaviors, and

fat metabolism (Chen, McClusky, Itoh, Reue, & Arnold, 2013; Quinn,

Hitchcott, Umeda, Arnold, & Taylor, 2007; Smith-Bouvier et al., 2008).

Due to the divergence of the sex chromosomes, it will be useful to

determine whether the genes mediating these phenotypes are con-

served between mouse and human. The most informative genes in this

regard are Kdm6a/Uty, Kdm5c/Kdm5d, and Ddx3x/Ddx3y, since, similar

to humans, they remain as X–Y pairs and the X homologs are expressed

from both X chromosomes in 40,XX female mice (Table 1).

Other strategies have been developed to study the effects of sex

chromosome constitution directly in humans. The preimplantation

embryo is a promising place to look at phenotypes mediated by the

sex chromosomes prior to the initiation of gonadal development and

hormone production. A single-cell study of human embryos from the

eight-cell stage to embryonic day 7 found sex-biased expression of

58 autosomal genes, 13 Y-linked genes, and 105 X-linked genes

(Petropoulos et al., 2016). It is likely that there were so many sex-

biased X-linked genes observed because X chromosome inactivation

is not yet complete during this developmental window. These results

indicate that the sex chromosomes significantly shape the early tran-

scriptome and may contribute to sex differences that include rate of

growth to the blastocyst stage and glucose metabolism, which differ

markedly between XX and XY human preimplantation embryos (Ray,

Conaghan, Winston, & Handyside, 1995). Other groups have used

human pluripotent stem cells (both embryonic and induced pluripo-

tent stem cells) to model TS and sex differences in the preimplantation

period (Ronen & Benvenisty, 2014; Syrett, Sierra, Berry, Beiting, &

Anguera, 2018; Urbach & Benvenisty, 2009). These are promising

model systems because they enable genetic manipulation and the

potential to recapitulate tissue differentiation in vitro. However, many

pluripotent cell lines have perturbed XCI status and must be carefully

evaluated on a case-by-case basis prior to being used to address ques-

tions related to sex chromosome constitution.

Another human-centric approach is to study individuals with

chromosomal mosaicism, in which cells with different sex chromo-

some constitutions are exposed to the same levels of gonadal hor-

mones and environmental stimuli. Individuals with typical 46,XX or

46,XY karyotypes lose sex chromosomes in blood cells with increased

age, which has stimulated interest in understanding the contributions

of this phenomenon to disease phenotypes (Guttenbach, Koschorz,

Bernthaler, Grimm, & Schmid, 1995; Jacobs, Doll, Goldstein,

Brunton, & Courtbrown, 1963). Indeed, researchers have found that

loss of the Y chromosome in men correlates with increased risk of

Alzheimer's disease and cancer (Dumanski et al., 2016; Forsberg et al.,

2014). It is worth noting that general chromosomal instability predis-

posing to cancer may result in Y loss simply because this chromosome

is easier to lose, so more research must be done to prove causality

(Wright et al., 2017). Mosaicism is also a common phenomenon in

women with TS; in fact, it is thought that all women with TS must be

mosaic for cells of another karyotype, such as 46,XX, because �99%

of fetuses with a complete 45,X karyotype do not survive fetal

development (Hook & Warburton, 1983, 2014). Mosaicism is associ-

ated with reduced severity of many phenotypes in TS, for example

45,X/46,XX mosaicism is associated with enhanced follicle develop-

ment and fertility (Borgstrom et al., 2009). To most effectively harness

mosaicism as a model in the future, we must learn more about its

TABLE 1 Mouse orthologs of human X–Y pair and PAR1 genes

Chromosomal location

Human gene Human Mousec

Ancestral X–Y pair genes SOX3/SRY X/Y X/Y

ZFX/ZFY X/Y X/Y

DDX3X/Y X/Y X/Ya

KDM6A/UTY X/Y X/Ya

KDM5C/D X/Y X/Ya

USP9X/Y X/Y X/Y

EIF1AX/Y X/Y X/18g

RPS4X/Y X/Y X/6g

AMELX/Y X/Y X/−

TXLNG/Y X/Y X/−

TMSB4X/Y X/Y X/−

NLGN4X/Y X/Y X/Y (PAR)

TBL1X/Y X/Y X/−

PRKX/Y X/Y X/−

PAR genes PLCXD1 X/Y (PAR1) 5

GTPBP6 X/Y (PAR1) 5d

PPP2R3B X/Y (PAR1) 9

SHOX X/Y (PAR1) −b

CRLF2 X/Y (PAR1) 5

CSF2RA X/Y (PAR1) 19e

IL3RA X/Y (PAR1) 14f

SLC25A6 X/Y (PAR1) −f

ASMTL X/Y (PAR1) −

P2RY8 X/Y (PAR1) −

AKAP17A X/Y (PAR1) X/Y (PAR)

ASMT X/Y (PAR1) X/Y (PAR)

DHRSX X/Y (PAR1) 4d

ZBED1 X/Y (PAR1) −d

CD99 X/Y (PAR1) 4h

PAR = pseudoautosomal region.
a X homolog expressed from both X chromosomes in human and mouse
(Berletch et al., 2015; Yang, Babak, Shendure, & Disteche, 2010).

b Human and mouse have a paralagous gene, SHOX2, on chr3 (Rao et
al., 1997).

c For X-Y pairs, presence or absence of the Y copy in mouse is confirmed
in (Soh et al., 2014).

d (Gianfrancesco et al., 2001).
e (Disteche et al., 1992).
f (Ellison, Li, Francke, & Shapiro, 1996).
g (Hughes et al., 2015).
h (Park et al., 2005).
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embryonic origins, dynamics throughout the lifespan, distribution

across the body, and variability between individuals.

These experimental strategies have begun to help us understand

the effects of the sex chromosomes in development, health, and dis-

ease, each with their strengths and weaknesses. Many of the

approaches are used to investigate sex chromosome constitution as a

whole, and not to study the influence of specific genes on the sex

chromosomes on a given phenotype. We will now present two case

studies that implicate one PAR gene and one X–Y pair in specific TS

phenotypes. In addition, we speculate about how these genes may be

relevant to sex differences.

4 | CASE STUDIES: DIRECT EFFECTS OF
SEX CHROMOSOME GENES ON
PHENOTYPES IN TS AND SEX DIFFERENCES

The best characterized genetic explanation for a phenotype in TS is

for the PAR gene short stature homeobox (SHOX), which, as the name

describes, is associated with short stature. The SHOX gene was ini-

tially identified through studies of short-statured individuals with

deletions on the tip of the short arm of the X chromosome (Rao et al.,

1997). Since then, the molecular functions of SHOX have been com-

prehensively investigated (see (Marchini, Ogata, & Rappold, 2016) for

an extensive review). Human studies show that SHOX is expressed in

the developing long bones of the forearms and lower limbs, as well as

the first and second pharyngeal arches, which contribute to the bones

of the face (Clement-Jones et al., 2000). Thus, SHOX is also thought

to be responsible for the skeletal phenotypes in TS, including cubitus

valgus, short metacarpals, and a high arched palate. As a testament to

the dosage sensitivity of SHOX in bone growth, individuals with an

extra sex chromosome, and therefore an extra copy of SHOX, are tal-

ler than average (Ogata & Matsuo, 1993). It is also interesting to spec-

ulate about the possibility that SHOX may contribute to sex

differences in height. Similar to other PAR genes, there is evidence

that SHOX is more highly expressed in 46,XY males, compared to

46,XX females. This result comes from a gene expression survey of

adult human tissues in which male bias was observed in all six tissues

where SHOX expression could be detected, but it remains to be seen

whether this is also true in the context of the developing long bones

(Tukiainen et al., 2017). Given the dosage sensitivity of SHOX demon-

strated by studies of individuals with sex chromosome aneuploidies, a

small difference in the expression of this gene may lead to nontrivial

sex differences in height.

Recently, the X–Y pair transducin beta like 1 X and Y (TBL1X/Y)

TBL1X/Y emerged as a compelling genetic explanation for the high

prevalence of sensorineural deafness in TS (Elsheikh, Dunger, Con-

way, & Wass, 2002; Gravholt, 2004). Genetic sequencing of a family

with X-linked inheritance of late-onset sensorineural deafness identi-

fied a causal loss-of-function mutation in TBL1X (Bassi et al., 1999).

Another family, this time with a Y-linked inheritance pattern of hearing

loss, was found to have a loss-of-function mutation in TBL1Y, the Y

homolog of TBL1X (Di Stazio et al., 2018). This is in contrast to a differ-

ent family in which Y-linked hearing loss was associated with transpo-

sition of a region of Chromosome 1 previously implicated in hearing

impairment to the Y chromosome (Wang et al., 2013). Available evi-

dence points to the potential for functional redundancy of TBL1X and

TBL1Y: both genes are expressed in the human cochlea, and in vitro

studies show that they bind to the same transcriptional corepressor

complex and have similar effects on gene expression (Di Stazio et al.,

2018; Guenther et al., 2000). Previously, it was reported that a recur-

rent Y chromosome deletion encompassing TBL1Y and several other

genes had “no major deleterious effects,” which cast doubt on

whether TBL1X/TBL1Y could contribute to phenotypes in TS (Jobling

et al., 2007). However, the authors state that they had no phenotypic

information about the subjects with the Y deletion, therefore the

results are not inconsistent with TBL1Y contributing to sensorineural

deafness. There are also clues that TBL1X/Y may be involved in sex

differences in hearing loss. TBL1Y is expressed three times higher than

TBL1X in the human cochlea, raising the possibility of a sex difference

in TBL1 activity in the inner ear (Di Stazio et al., 2018). Interestingly,

several large studies have found that hearing loss, especially at high

frequencies, is more prevalent in men compared to women (Gates,

Cooper Jr., Kannel, & Miller, 1990; Helzner et al., 2005; Moller, 1981).

More research is required to definitively show that the TBL1X/Y pair is

involved in hearing loss and to investigate its molecular functions in

the inner ear. Nevertheless, these initial findings provide a promising

avenue for a more thorough understanding of this prevalent pheno-

type in TS and may lead to novel therapeutic approaches.

5 | CONCLUSIONS AND FUTURE
PROSPECTS

This is an exciting time to reinvigorate research into the sex chromo-

somes and apply our extensive evolutionary, structural, and functional

understanding to new questions in the realms of TS and sex differ-

ences. The tandem approach of combining the study of sex chromo-

some aneuploidy and sex differences is already yielding promising

results. It has been extensively applied toward understanding the con-

tributions of the sex chromosomes to neurodevelopmental and psy-

chiatric disorders (recently reviewed in Green, Flash, and Reiss

(2019)). To make further progress, we issue the following recommen-

dations. First, we must invest in resources such as large clinical data-

sets measuring phenotypes of interest in populations with different

sex chromosome constitutions. We must also develop biorepositories

to store cells and tissues from these individuals, as it is difficult for

any single investigator to obtain enough samples for robust molecular

studies of human tissues. Second, we must explore new methods for

studying the sex chromosomes in the context of specific phenotypes,

in a manner that is free of confounding variables. This includes

improving our abilities to model sex differences and sex chromosome

aneuploidies both in vivo, using engineered mouse models or explor-

ing other model organisms, and in vitro through pluripotent stem cell

cultures and directed differentiation into specific tissues of interest.

Finally, we must engage multidisciplinary teams of clinicians and scien-

tists, the sex chromosome aneuploidy communities, and representa-

tives from the biotechnology and pharmaceutical industries to join in

these pursuits. Ultimately, biology has linked TS and sex differences

through the shared molecular phenomenon of differences in X and Y
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chromosome dose. It is now up to researchers to achieve a broad

understanding of the contributions of sex chromosome constitution

to human development, health, and disease; and to use this knowl-

edge to transform medical care for future generations.
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