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A single mapping resource, a mouse/human somatic
cell panel with average distance between breakpoints
of 1.2 Mb and a potential resolution of 1 Mb, has been
utilized to integrate the genetic map and a transcript
map of human chromosome 16. This map includes 141
genetic markers and 200 genes and transcripts. The
localization of four genes (CHEL3, TK2, TRG1, and
MMP9) reported to map to chromosome 16 could not
be confirmed, and for three of these localizations to
other human chromosomes are reported. A correlation
between genetic and physical distance over a region
estimated to be 23 Mb on the short arm of chromosome
16 identified an interval demonstrating a greatly in-
creased rate of recombination where, in females, 1 cM
is equivalent to a physical distance of 100 kb. o 1995
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INTRODUCTION

Positional cloning of human disease genes has been
facilitated by the construction of detailed genetic maps
for the entire genome (Weissenbach et al., 1992) and
subsequently by more detailed chromosome-specific ge-
netic maps. Positional cloning of disease genes can be
facilitated by the construction of transcript maps to
provide rapid access to candidate genes. For the tran-
script map to be useful it is essential that this map be
integrated with the genetic map by utilizing a common
mapping framework. This integration allows easy and
accurate access from the genetic map to candidate
genes and their transcripts.

* To whom correspondence should be addressed. Telephone: (618)
204-6715. Fax: (618) 204-7342.

The variety of approaches utilized for the localization
of genes and their transcripts can result in data that
are difficult to merge with any accuracy into a single
physical map and are unlikely to be integrated with
genetic maps. We have utilized a high-resolution so-
matic cell hybrid panel for the entire chromosome 16
to provide a uniform framework for the integration and
mapping of genes and their transcripts generated by
groups cloning individual genes or generated as part of
entire genome or chromosome-specific mapping efforts.
Together with the physical location of microsatellite
markers utilized for the genetic map to the same so-
matic cell hybrid panel, this provides an integrated
genetic and expressed sequence map.

MATERIALS AND METHODS

Somatic cell hybrid panel. A high-resolution mouse/human so-
matic cell hybrid panel was constructed by fusing human cell lines
with the mouse cell line A9. Selection of hybrids containing human
chromosome 16 was based on the gene APRT, at 16g24.3. The major-
ity of the human cell lines contained translocations or interstitial
deletions involving chromosome 16 and were ascertained in clinical
cytogenetic laboratories. The construction of this panel has been de-
scribed in detail elsewhere (Callen, 1986; Callen et al., 1990). A fur-
ther extension of this panel has been described in Whitmore et al.
(1994) with a complete listing of hybrids given in Table 1 of Doggett
and Callen (1995). In general, each hybrid contains the region of
chromosome 16 from the breakpoint to 16qter. Somatic cell hybrids
with an interstitial deletion of chromosome 16 are CY180, CY160,
CY138, CY130, CY125, CY127, CY113, and CY107. In each of these
there are two breakpoints on chromosome 16, designated by D (dis-
tal) or P (proximal). CY18A and CY145 are complex, and each contain
two fragments of chromosome 16. For the hybrids CY189 and CY3
the derivative chromosome 16 contains the region from the pter to the
breakpoint because the translocations involved the X chromosome,
allowing selection in tissue culture based on the gene HPRT at Xg26.

When possible, genes or cDNAs known to be on chromosome 16
were mapped to the somatic cell hybrid panel by PCR amplification
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using oligoprimers. The amplified products were visualized on ethid-
ium bromide-stained agarose gels. Mapping was initially against a
subset of the panel (hybrids CY2, CY3, CY12, CY105, CY126, and
CY186, A9 mouse control, human control), with subsequent screen-
ing of additional hybrid cell lines in the identified region to achieve
final localization.

Genes. Whitmore et al. (1994) reported genes and transcripts that
were mapped to a subset of the present hybrid panel, and when
necessary the localizations have been further refined by screening
the additional somatic cell hybrids. Since that previous report, the
following gene localizations to the somatic cell panel have been pub-
lished: SLC9AS5 (Klanke et al., 1995), PLCG2 (Hernandez et al.,
1994), DNL1 (Yasuda et al., 1995), MRP (Kuss et al., 1994), SAH
(Samani et al., 1994), STM (Aksoy et al., 1994), GTF3C1 (D’Arigo et
al., 1995), ITGAL and ITGAX (Kremmidiotis et al., unpublished),
and CNCG2 and CNCG3 (Ardell, Pittler et al., unpublished).

The gene CBFB was mapped by probing Southern blots of somatic
cell hybrid DNA with a probe showing homology to the published
sequence of this gene. The gene BCGF1 was mapped by hybridizing
to Southern blots of hybrid DNA a probe amplified from genomic
DNA with the primers P3 and P4 (Kovanen et al., 1995). All other
genes were localized using PCR.

The Genome Data Base (GDB) was utilized to identify genes map-
ping to chromosome 16. For each gene the sequence was accessed
from GenBank, and when possible oligoprimers were designed within
the 3’ or 5’ untranslated regions. This reduces the possibility of PCR
amplification of large introns or of a similar size band from mouse
DNA. Table 1 gives details of primers designed for cloned genes that
had been identified as mapping to chromosome 16. Primers were as
published for the genes STP (Dooley et al., 1994) and HMOX2 (Kutty
et al., 1994).

Transcripts. The majority of mapped transcripts were generated
from the sequencing of randomly isolated cDNAs. These were ini-
tially localized to chromosome 16 by analysis of a monochromosomal
hybrid panel. Details of these markers are published (Khan et al.,
1992; Durkin et al., 1992; Polymeropoulos et al., 1993; Murakawa et
al., 1994; Auffray et al., 1995) and/or can be accessed from GDB by
utilizing the appropriate D16S number. All transcripts, except those
reported by Whitmore et al. (1994), were localized by PCR.

Genetic map. A framework genetic map (odds >1000:1) was con-
structed from the CEPH database (version 7, Kozman et al., 1995)
utilizing PCR-based microsatellite markers. This map was con-
structed with the BUILD option of CRIMAP. Subsequently, addi-
tional loci that mapped to physical intervals on the somatic hybrid-
based physical map but that were not represented on the framework
map were included. These additional loci were inserted using the
ALL option of CRIMAP with genetic distances calculated by the
FIXED option. The genetic markers were also physically mapped by
PCR to the somatic cell hybrid panel. There are additional micro-
satellite markers that have been localized on the physical map but
have not been placed on this genetic map.

Physical distances. A megaYAC contig consisting of 700 mega-
YACs and 400 STSs has been constructed for chromosome 16 (Dog-
gett and Callen, 1995). To construct the contig, STSs were localized
to the high-resolution somatic cell hybrid panel and screened against
the Généthon megaYAC library. Each STS was positive for an aver-
age of 5 megaYACs and each megaYAC contained an average of 3.5
STSs. The distances between STSs in this map were estimated by
using the optimal spacing of STS with the SEGMAP v2.5 program.
These data were graphically represented in the SIGMA program.
This permitted the positioning of somatic cell hybrid breakpoints at
measured distances along the chromosome between STSs in adjacent
intervals of the breakpoint map. For the purposes of the present
study, genetic markers were assumed to lie midway between the
breakpoints defining an interval, and if more than one marker was
in an interval these were distributed evenly.

Availability of data and resources. A subset of the mouse/human
somatic cell hybrids is available from the NIGMS Human Genetic
Mutant Cell Repository (Camden, NJ). Other hybrid cell lines are
available from DFC by request. Some mapping data have been sub-
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mitted to GDB as “map strings” following the Third International
Workshop on Chromosome 16 (Doggett and Callen, 1995). Additional
mapping information is available from the Los Alamos National Lab-
oratory (http://www-Is.lanl.gov/masterhgp.html).

RESULTS

Figure 1 presents the integrated genetic map and
transcript map of chromosome 16 based on the panel
of somatic cell hybrids. This panel of over 100 unique
breakpoints defines 82 intervals at an average resolu-
tion of 1.2 Mb and potentially provides an average map-
ping resolution over the entire chromosome of approxi-
mately 1 Mb. The density of genes varies for different
regions of the chromosome. For example, only one tran-
script has been found to map between CY185 and CY11
(2.7 Mb estimated size) and within the interstitial dele-
tion encompassing 16921 that is contained in the hy-
brid CY130 (4.2 Mb estimated size). A high concentra-
tion of genes was found at bands 16g24.3 and in the
proximal portion of 16p11.2.

The transcript D16S2555E (Bdy95g07) is homolo-
gous to the gene sequence of ATP5A1, and this there-
fore provides a localization for this gene. Several of
the mapped transcripts from the Genexpress program
(Auffray et al., 1995) were found to have homology to
already localized genes or to each other; see Fig. 1.

Several gene localizations that were reported to be
on chromosome 16 could not be confirmed. CHEL3, bu-
tylcholinesterase-like 3, was reported to be on 16pll—
g23 by in situ hybridization studies (Soreq et al., 1987).
Southern blot hybridization to a panel of somatic cell
hybrid DNAs with the probe FL39 failed to show any
bands consistent with a localization on chromosome 16.
TK2, a mitochondrial thymidine kinase, was mapped
to chromosome 16 by analysis of somatic cell hybrids
(Willecke et al., 1977). Primers generated from the 3’
untranslated region of the sequence (GenBank Acces-
sion No. K02581) were used to amplify DNA from the
NIGMS panel of somatic cell hybrids containing single
chromosomes. Results were consistent with a location
of TK2 on chromosome 15. TRG1, a gene coding for
a glycine tRNA, was assigned to chromosome 16 by
analysis of somatic cell hybrids (McBride et al., 1989).
Primers generated from the sequence (GenBank Acces-
sion No. M11273), the forward primer in the 5’ un-
translated region and the reverse primer in the coding
sequence, failed to generate any bands specific for chro-
mosome 16. PCR analysis of the NIGMS panel of single
chromosome hybrids amplified only bands consistent
with a location on chromosome 1. The tRNA glycine-
like gene (TRGL1) is at 1p34—p36; however, the prim-
ers used for TRG1 showed no homology to the sequence
of this gene (GenBank AM13661). MMP2 (formerly
known as CLG4A) maps to the proximal long arm of
chromosome 16. A second gene in this family, MMP9,
has been reported to map to chromosome 16 (Collier et
al., 1991). Primers generated from the 5’ untranslated
region of MMP9 sequence (GenBank Accession No.
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FIG. 2. Correlation between genetic distance and physical distance on the short arm of chromosome 16. The genetic distance is presented
as the cumulative female (circles), male (diamonds), and sex-averaged (triangles) map distances in cM from D16S423 to D16S298. The
physical distances between somatic cell hybrid breakpoints were calculated from the megaYAC contig of chromosome 16. Genetic markers
were assumed to be at the midpoint of an interval, for a single marker, or where there was more than one genetic marker to be equally
distributed between the hybrid breakpoints defining the physical interval.

D10051) were used to PCR amplify DNA from the
NIGMS hybrid panel. Results were consistent with a
localization on chromosome 20.

The genetic map provides an average distance be-
tween markers of 2.8 cM with the largest interval being
11.1 cM. Listed in Fig. 1 are the microsatellite markers
included in this genetic map and additional microsatel-
lite markers that have been localized to the physical
map using somatic cell hybrids. For each marker in
the short arm, from 16p13.3 to 16pll.2, the genetic
distance in cM is plotted against the estimated physical
distance in Mb (Fig. 2). The megaYAC contig was not
sufficiently detailed to enable an estimation of physical
distance for other regions of the chromosome. There
was a small gap in the megaYAC contig in the region
between the hybrid breakpoints CY19 and CY185, but
additional evidence (unpublished) suggests that this
gap is small. For the long arm, the existence of several
gaps in the contig inhibited the construction of a contig-
uous physical map. Data were not sufficiently detailed
to enable exact distances to be determined between the
genetic markers. Therefore, each genetic marker was
assumed to be midway between its flanking somatic
cell hybrid breakpoints. Where there was more than
one genetic marker in an interval these were assumed
to be equidistant. For the estimated 23 Mb of the short
arm represented in Fig. 2, 1 cM of the sex-averaged
map is equivalent to 400 kb.

Also depicted in Fig. 2 are the sex-specific distances.
The male map is 1.3-fold longer than the female map
in the region from D16S423 to D16S501. Proximal to
this region male recombination is greatly reduced. The
frequency of recombination in the female is maintained
at a relatively constant rate/unit of physical distance.
An exception is between the markers D16S412 to
D16S295, in the region between the hybrid breakpoints
CY15 and CY165, where the recombination frequency
is increased in both sexes. In females, this increase is
equivalent to 1 cM representing approximately 100 kb

of DNA. The relationship presented on the graph as-
sumes equal distribution of microsatellite markers
within an interval defined by hybrid breakpoints.
Therefore, this may lead to an underestimate of the
expansion of the genetic map in this region.

DISCUSSION

One hundred forty-one genetic markers, 76 genes,
and 124 transcripts have been integrated into a physi-
cal map of chromosome 16 (Fig. 1) using a single map-
ping resource, a high-resolution mouse/human somatic
cell panel of chromosome 16. This physical map con-
sists of 93 breakpoints represented in mouse/human
somatic cell hybrids and four fragile sites that together
define 82 intervals of average size of 1.2 Mb and poten-
tially define 93 intervals of 1 Mb average size. This
integrated map will provide a resource to allow rapid
selection of flanking microsatellite markers for further
detailed genetic localization of a disease gene. Since
the physical location of these genetic markers is known,
the physical interval containing the disease gene can
be defined by somatic cell hybrid breakpoints. The
genes and expressed sequences in each region will then
provide potential candidate genes for the mapped dis-
ease. However, use of PCR to localize transcripts does
not usually allow discrimination between functional
genes and pseudogenes. This can be determined only
by more detailed studies of the genomic structure of a
gene.

The existence of such detailed physical maps pro-
vides the opportunity to examine the density of genes
in different regions of the chromosome. Evidence from
FISH studies using a GC-rich isochore (Saccone et al.,
1992) and CpG islands (Craig and Bickmore, 1994) sug-
gests that G-negative bands, especially those at the
telomeres, are gene-rich, while G-positive bands are
gene-poor. The majority of G-positive bands on chromo-
some 16 are relatively diffuse, and there is no obvious
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evidence for lack of genes in these regions, although
the hybrid breakpoints have not always been related
to the G-banding pattern. An exception is band 16q21,
which is an intensely staining G-positive band that
maintains its integrity at high levels of banding resolu-
tion. Individuals who have a normal phenotype and
are heterozygous for a deletion of this band have been
described (Witt et al., 1988). The somatic cell hybrid
CY130 was derived from this deleted chromosome.
From the megaYAC contig this band is estimated to
be 4.2 Mb, and only a single transcript has been local-
ized within the deletion contained in CY130. There-
fore, 16921 is a G-positive band that is deficient in
transcripts and possibly deficient in cytogenetic
breakpoints. It is likely that the properties of gene de-
ficiency apply only to the intensely G-positive bands.

A second region, which contains a single mapped
gene, is between the hybrid breakpoints CY185 and
CY11 in p13.11, encompassing an estimated 2.7 Mb of
DNA. This is the region that contains FRA16A, which
is situated in an extensive duplicated segment that has
yet to be resolved in detail (Nancarrow et al., 1994).

16p13.3 is gene rich. This is not obvious from Fig. 2,
since mapping in this region is underrepresented in
this study. Experience from preliminary work aimed
at cloning the gene for polycystic kidney disease indi-
cated a high gene density in this region (Harris et al.,
1990). Regions from Fig. 1 indicating potential regions
of high gene density are 16g22.1 and 16qg24.3, both of
which were highlighted in the studies by Saccone et al.
(1992). An additional region containing many genes is
16p11.2. Of the genes located to this region, a number
are involved in cell surface receptors.

The construction of high-resolution megaYAC con-
tigs for chromosome 16 (Doggett and Callen, 1995) pro-
vides the opportunity to relate genetic and physical
distances. It is possible that consistent deletions in
megaYACs could lead to an underestimate of physical
distance, but considering the density of STSs used to
generate the megaYAC contig, these are unlikely to be
extensive. A region of an estimated distance of 23 Mb,
from 16p13.3 to 16p11.2, was the longest region of con-
tinuous megaYAC coverage. Over this interval, a sex-
averaged genetic distance of 1 cM is equivalent to an
estimated physical distance of 400 kb. This compares
with the whole chromosome average of approximately
600 kb/cM (total length of sex-averaged genetic map
152 ¢cM (Kozman et al., 1995), total length of chromo-
some 95 Mb). A more detailed analysis of the sex-spe-
cific recombination shows that for the first 15 Mb of
this estimated 23-Mb region, male recombination is
consistently greater than that of female. However,
proximal to the marker D16S501 the male rate is sup-
pressed with respect to the female. The findings of gen-
eral suppression of male recombination across the cen-
tromere but greater male recombination at the te-
lomeres has been previously described for this
chromosome (Kozman et al., 1995). Of particular inter-
est is a region of greatly increased recombination that
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is present in both sexes, but particularly evident in
females, where 1 cM is equivalent to a estimated physi-
cal distance of 100 kb. This is a conservative estimate
due to the absence of detailed physical distances be-
tween the microsatellite markers. This hot spot of re-
combination is unlikely to be an artifact, as the mega-
YAC contig is highly redundant in this region, giving
areliable estimate of physical distance, and three of the
five genetic markers (D16S67, D16S295, and D16S319)
have been typed in the extended set of 40 CEPH fami-
lies. Hot spots of recombination have been documented
within the DMD gene, where rates of 1 cM/91 kb over
a 440-kb region were described (Oudet et al., 1992).
Together with the results of this study, it is evident
that hot spots of recombination may be a general phe-
nomenon.

In conclusion, the mouse/human somatic cell hybrid
panel of chromosome 16 provides average physical
mapping at a resolution of near 1 Mb, and this is an
ideal resource for integrating a variety of data gener-
ated from various sources. The construction of such an
integrated map containing genetic markers and gene
transcripts provides a unique resource for this chromo-
some.
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