
GENOMICS 29, 503–511 (1995)

Integration of Transcript and Genetic Maps of Chromosome 16
at Near-1-Mb Resolution: Demonstration of a ‘‘Hot Spot’’

for Recombination at 16p12

D. F. CALLEN,1 S. A. LANE, H. KOZMAN, G. KREMMIDIOTIS, S. A. WHITMORE, M. LOWENSTEIN,*
N. A. DOGGETT,* N. KENMOCHI,† D. C. PAGE,† D. R. MAGLOTT,‡ W. C. NIERMAN,‡

K. MURAKAWA,§ R. BERRY,Ø J. M. SIKELA,Ø R. HOULGATTE,\
C. AUFFRAY,\ AND G. R. SUTHERLAND

Department of Cytogenetics and Molecular Genetics, Women’s and Children’s Hospital, 72 King William Road, North Adelaide,
South Australia, Australia 5006; *Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545; †Howard

Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02142; ‡American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland; §Institute for Molecular and
Cellular Biology, Osaka University, Osaka, 565, Japan; ØDepartment of Pharmacology, University Colorado Health Sciences Center,
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The variety of approaches utilized for the localization
A single mapping resource, a mouse/human somatic of genes and their transcripts can result in data that

cell panel with average distance between breakpoints are difficult to merge with any accuracy into a single
of 1.2 Mb and a potential resolution of 1 Mb, has been physical map and are unlikely to be integrated with
utilized to integrate the genetic map and a transcript genetic maps. We have utilized a high-resolution so-
map of human chromosome 16. This map includes 141 matic cell hybrid panel for the entire chromosome 16
genetic markers and 200 genes and transcripts. The to provide a uniform framework for the integration and
localization of four genes (CHEL3, TK2, TRG1, and mapping of genes and their transcripts generated by
MMP9) reported to map to chromosome 16 could not groups cloning individual genes or generated as part of
be confirmed, and for three of these localizations to entire genome or chromosome-specific mapping efforts.
other human chromosomes are reported. A correlation Together with the physical location of microsatellitebetween genetic and physical distance over a region markers utilized for the genetic map to the same so-estimated to be 23 Mb on the short arm of chromosome

matic cell hybrid panel, this provides an integrated16 identified an interval demonstrating a greatly in-
genetic and expressed sequence map.creased rate of recombination where, in females, 1 cM

is equivalent to a physical distance of 100 kb. q 1995

MATERIALS AND METHODSAcademic Press, Inc.

Somatic cell hybrid panel. A high-resolution mouse/human so-
matic cell hybrid panel was constructed by fusing human cell lines

INTRODUCTION with the mouse cell line A9. Selection of hybrids containing human
chromosome 16 was based on the gene APRT, at 16q24.3. The major-
ity of the human cell lines contained translocations or interstitialPositional cloning of human disease genes has been
deletions involving chromosome 16 and were ascertained in clinicalfacilitated by the construction of detailed genetic maps
cytogenetic laboratories. The construction of this panel has been de-for the entire genome (Weissenbach et al., 1992) and scribed in detail elsewhere (Callen, 1986; Callen et al., 1990). A fur-

subsequently by more detailed chromosome-specific ge- ther extension of this panel has been described in Whitmore et al.
netic maps. Positional cloning of disease genes can be (1994) with a complete listing of hybrids given in Table 1 of Doggett

and Callen (1995). In general, each hybrid contains the region offacilitated by the construction of transcript maps to
chromosome 16 from the breakpoint to 16qter. Somatic cell hybridsprovide rapid access to candidate genes. For the tran-
with an interstitial deletion of chromosome 16 are CY180, CY160,script map to be useful it is essential that this map be CY138, CY130, CY125, CY127, CY113, and CY107. In each of these

integrated with the genetic map by utilizing a common there are two breakpoints on chromosome 16, designated by D (dis-
tal) or P (proximal). CY18A and CY145 are complex, and each containmapping framework. This integration allows easy and
two fragments of chromosome 16. For the hybrids CY189 and CY3accurate access from the genetic map to candidate
the derivative chromosome 16 contains the region from the pter to thegenes and their transcripts.
breakpoint because the translocations involved the X chromosome,
allowing selection in tissue culture based on the gene HPRT at Xq26.

When possible, genes or cDNAs known to be on chromosome 161 To whom correspondence should be addressed. Telephone: (618)
204-6715. Fax: (618) 204-7342. were mapped to the somatic cell hybrid panel by PCR amplification
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using oligoprimers. The amplified products were visualized on ethid- mitted to GDB as ‘‘map strings’’ following the Third International
Workshop on Chromosome 16 (Doggett and Callen, 1995). Additionalium bromide-stained agarose gels. Mapping was initially against a

subset of the panel (hybrids CY2, CY3, CY12, CY105, CY126, and mapping information is available from the Los Alamos National Lab-
oratory (http://www-ls.lanl.gov/masterhgp.html).CY186, A9 mouse control, human control), with subsequent screen-

ing of additional hybrid cell lines in the identified region to achieve
final localization.

RESULTSGenes. Whitmore et al. (1994) reported genes and transcripts that
were mapped to a subset of the present hybrid panel, and when
necessary the localizations have been further refined by screening Figure 1 presents the integrated genetic map and
the additional somatic cell hybrids. Since that previous report, the

transcript map of chromosome 16 based on the panelfollowing gene localizations to the somatic cell panel have been pub-
of somatic cell hybrids. This panel of over 100 uniquelished: SLC9A5 (Klanke et al., 1995), PLCG2 (Hernandez et al.,

1994), DNL1 (Yasuda et al., 1995), MRP (Kuss et al., 1994), SAH breakpoints defines 82 intervals at an average resolu-
(Samani et al., 1994), STM (Aksoy et al., 1994), GTF3C1 (D’Arigo et tion of 1.2 Mb and potentially provides an average map-
al., 1995), ITGAL and ITGAX (Kremmidiotis et al., unpublished), ping resolution over the entire chromosome of approxi-and CNCG2 and CNCG3 (Ardell, Pittler et al., unpublished).

mately 1 Mb. The density of genes varies for differentThe gene CBFB was mapped by probing Southern blots of somatic
regions of the chromosome. For example, only one tran-cell hybrid DNA with a probe showing homology to the published

sequence of this gene. The gene BCGF1 was mapped by hybridizing script has been found to map between CY185 and CY11
to Southern blots of hybrid DNA a probe amplified from genomic (2.7 Mb estimated size) and within the interstitial dele-
DNA with the primers P3 and P4 (Kovanen et al., 1995). All other tion encompassing 16q21 that is contained in the hy-genes were localized using PCR.

brid CY130 (4.2 Mb estimated size). A high concentra-The Genome Data Base (GDB) was utilized to identify genes map-
ping to chromosome 16. For each gene the sequence was accessed tion of genes was found at bands 16q24.3 and in the
from GenBank, and when possible oligoprimers were designed within proximal portion of 16p11.2.
the 3 * or 5* untranslated regions. This reduces the possibility of PCR The transcript D16S2555E (Bdy95g07) is homolo-
amplification of large introns or of a similar size band from mouse gous to the gene sequence of ATP5A1, and this there-DNA. Table 1 gives details of primers designed for cloned genes that

fore provides a localization for this gene. Several ofhad been identified as mapping to chromosome 16. Primers were as
published for the genes STP (Dooley et al., 1994) and HMOX2 (Kutty the mapped transcripts from the Genexpress program
et al., 1994). (Auffray et al., 1995) were found to have homology to

Transcripts. The majority of mapped transcripts were generated already localized genes or to each other; see Fig. 1.
from the sequencing of randomly isolated cDNAs. These were ini- Several gene localizations that were reported to be
tially localized to chromosome 16 by analysis of a monochromosomal

on chromosome 16 could not be confirmed. CHEL3, bu-hybrid panel. Details of these markers are published (Khan et al.,
tylcholinesterase-like 3, was reported to be on 16p11–1992; Durkin et al., 1992; Polymeropoulos et al., 1993; Murakawa et

al., 1994; Auffray et al., 1995) and/or can be accessed from GDB by q23 by in situ hybridization studies (Soreq et al., 1987).
utilizing the appropriate D16S number. All transcripts, except those Southern blot hybridization to a panel of somatic cell
reported by Whitmore et al. (1994), were localized by PCR. hybrid DNAs with the probe FL39 failed to show any

Genetic map. A framework genetic map (odds ú1000:1) was con- bands consistent with a localization on chromosome 16.
structed from the CEPH database (version 7, Kozman et al., 1995)

TK2, a mitochondrial thymidine kinase, was mappedutilizing PCR-based microsatellite markers. This map was con-
to chromosome 16 by analysis of somatic cell hybridsstructed with the BUILD option of CRIMAP. Subsequently, addi-

tional loci that mapped to physical intervals on the somatic hybrid- (Willecke et al., 1977). Primers generated from the 3 *
based physical map but that were not represented on the framework untranslated region of the sequence (GenBank Acces-
map were included. These additional loci were inserted using the sion No. K02581) were used to amplify DNA from the
ALL option of CRIMAP with genetic distances calculated by the

NIGMS panel of somatic cell hybrids containing singleFIXED option. The genetic markers were also physically mapped by
chromosomes. Results were consistent with a locationPCR to the somatic cell hybrid panel. There are additional micro-

satellite markers that have been localized on the physical map but of TK2 on chromosome 15. TRG1, a gene coding for
have not been placed on this genetic map. a glycine tRNA, was assigned to chromosome 16 by

Physical distances. A megaYAC contig consisting of 700 mega- analysis of somatic cell hybrids (McBride et al., 1989).
YACs and 400 STSs has been constructed for chromosome 16 (Dog- Primers generated from the sequence (GenBank Acces-
gett and Callen, 1995). To construct the contig, STSs were localized

sion No. M11273), the forward primer in the 5* un-to the high-resolution somatic cell hybrid panel and screened against
translated region and the reverse primer in the codingthe Généthon megaYAC library. Each STS was positive for an aver-

age of 5 megaYACs and each megaYAC contained an average of 3.5 sequence, failed to generate any bands specific for chro-
STSs. The distances between STSs in this map were estimated by mosome 16. PCR analysis of the NIGMS panel of single
using the optimal spacing of STS with the SEGMAP v2.5 program. chromosome hybrids amplified only bands consistent
These data were graphically represented in the SIGMA program. with a location on chromosome 1. The tRNA glycine-This permitted the positioning of somatic cell hybrid breakpoints at

like gene (TRGL1) is at 1p34–p36; however, the prim-measured distances along the chromosome between STSs in adjacent
intervals of the breakpoint map. For the purposes of the present ers used for TRG1 showed no homology to the sequence
study, genetic markers were assumed to lie midway between the of this gene (GenBank AM13661). MMP2 (formerly
breakpoints defining an interval, and if more than one marker was known as CLG4A) maps to the proximal long arm of
in an interval these were distributed evenly. chromosome 16. A second gene in this family, MMP9,

Availability of data and resources. A subset of the mouse/human has been reported to map to chromosome 16 (Collier etsomatic cell hybrids is available from the NIGMS Human Genetic
al., 1991). Primers generated from the 5* untranslatedMutant Cell Repository (Camden, NJ). Other hybrid cell lines are

available from DFC by request. Some mapping data have been sub- region of MMP9 sequence (GenBank Accession No.
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FIG. 2. Correlation between genetic distance and physical distance on the short arm of chromosome 16. The genetic distance is presented
as the cumulative female (circles), male (diamonds), and sex-averaged (triangles) map distances in cM from D16S423 to D16S298. The
physical distances between somatic cell hybrid breakpoints were calculated from the megaYAC contig of chromosome 16. Genetic markers
were assumed to be at the midpoint of an interval, for a single marker, or where there was more than one genetic marker to be equally
distributed between the hybrid breakpoints defining the physical interval.

D10051) were used to PCR amplify DNA from the of DNA. The relationship presented on the graph as-
sumes equal distribution of microsatellite markersNIGMS hybrid panel. Results were consistent with a

localization on chromosome 20. within an interval defined by hybrid breakpoints.
Therefore, this may lead to an underestimate of theThe genetic map provides an average distance be-

tween markers of 2.8 cM with the largest interval being expansion of the genetic map in this region.
11.1 cM. Listed in Fig. 1 are the microsatellite markers
included in this genetic map and additional microsatel- DISCUSSION
lite markers that have been localized to the physical
map using somatic cell hybrids. For each marker in One hundred forty-one genetic markers, 76 genes,

and 124 transcripts have been integrated into a physi-the short arm, from 16p13.3 to 16p11.2, the genetic
distance in cM is plotted against the estimated physical cal map of chromosome 16 (Fig. 1) using a single map-

ping resource, a high-resolution mouse/human somaticdistance in Mb (Fig. 2). The megaYAC contig was not
sufficiently detailed to enable an estimation of physical cell panel of chromosome 16. This physical map con-

sists of 93 breakpoints represented in mouse/humandistance for other regions of the chromosome. There
was a small gap in the megaYAC contig in the region somatic cell hybrids and four fragile sites that together

define 82 intervals of average size of 1.2 Mb and poten-between the hybrid breakpoints CY19 and CY185, but
additional evidence (unpublished) suggests that this tially define 93 intervals of 1 Mb average size. This

integrated map will provide a resource to allow rapidgap is small. For the long arm, the existence of several
gaps in the contig inhibited the construction of a contig- selection of flanking microsatellite markers for further

detailed genetic localization of a disease gene. Sinceuous physical map. Data were not sufficiently detailed
to enable exact distances to be determined between the the physical location of these genetic markers is known,

the physical interval containing the disease gene cangenetic markers. Therefore, each genetic marker was
assumed to be midway between its flanking somatic be defined by somatic cell hybrid breakpoints. The

genes and expressed sequences in each region will thencell hybrid breakpoints. Where there was more than
one genetic marker in an interval these were assumed provide potential candidate genes for the mapped dis-

ease. However, use of PCR to localize transcripts doesto be equidistant. For the estimated 23 Mb of the short
arm represented in Fig. 2, 1 cM of the sex-averaged not usually allow discrimination between functional

genes and pseudogenes. This can be determined onlymap is equivalent to 400 kb.
Also depicted in Fig. 2 are the sex-specific distances. by more detailed studies of the genomic structure of a

gene.The male map is 1.3-fold longer than the female map
in the region from D16S423 to D16S501. Proximal to The existence of such detailed physical maps pro-

vides the opportunity to examine the density of genesthis region male recombination is greatly reduced. The
frequency of recombination in the female is maintained in different regions of the chromosome. Evidence from

FISH studies using a GC-rich isochore (Saccone et al.,at a relatively constant rate/unit of physical distance.
An exception is between the markers D16S412 to 1992) and CpG islands (Craig and Bickmore, 1994) sug-

gests that G-negative bands, especially those at theD16S295, in the region between the hybrid breakpoints
CY15 and CY165, where the recombination frequency telomeres, are gene-rich, while G-positive bands are

gene-poor. The majority of G-positive bands on chromo-is increased in both sexes. In females, this increase is
equivalent to 1 cM representing approximately 100 kb some 16 are relatively diffuse, and there is no obvious
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evidence for lack of genes in these regions, although is present in both sexes, but particularly evident in
females, where 1 cM is equivalent to a estimated physi-the hybrid breakpoints have not always been related

to the G-banding pattern. An exception is band 16q21, cal distance of 100 kb. This is a conservative estimate
due to the absence of detailed physical distances be-which is an intensely staining G-positive band that

maintains its integrity at high levels of banding resolu- tween the microsatellite markers. This hot spot of re-
combination is unlikely to be an artifact, as the mega-tion. Individuals who have a normal phenotype and

are heterozygous for a deletion of this band have been YAC contig is highly redundant in this region, giving
a reliable estimate of physical distance, and three of thedescribed (Witt et al., 1988). The somatic cell hybrid

CY130 was derived from this deleted chromosome. five genetic markers (D16S67, D16S295, and D16S319)
have been typed in the extended set of 40 CEPH fami-From the megaYAC contig this band is estimated to

be 4.2 Mb, and only a single transcript has been local- lies. Hot spots of recombination have been documented
within the DMD gene, where rates of 1 cM/91 kb overized within the deletion contained in CY130. There-

fore, 16q21 is a G-positive band that is deficient in a 440-kb region were described (Oudet et al., 1992).
Together with the results of this study, it is evidenttranscripts and possibly deficient in cytogenetic

breakpoints. It is likely that the properties of gene de- that hot spots of recombination may be a general phe-
nomenon.ficiency apply only to the intensely G-positive bands.

A second region, which contains a single mapped In conclusion, the mouse/human somatic cell hybrid
panel of chromosome 16 provides average physicalgene, is between the hybrid breakpoints CY185 and

CY11 in p13.11, encompassing an estimated 2.7 Mb of mapping at a resolution of near 1 Mb, and this is an
ideal resource for integrating a variety of data gener-DNA. This is the region that contains FRA16A, which

is situated in an extensive duplicated segment that has ated from various sources. The construction of such an
integrated map containing genetic markers and geneyet to be resolved in detail (Nancarrow et al., 1994).

16p13.3 is gene rich. This is not obvious from Fig. 2, transcripts provides a unique resource for this chromo-
some.since mapping in this region is underrepresented in
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